Category:FL7

From Metabolomics.JP
(Difference between revisions)
Jump to: navigation, search
m ({{Bilingual|分布|Distribution}})
 
(14 intermediate revisions by one user not shown)
Line 7: Line 7:
 
  ! colspan="4"|2nd Class
 
  ! colspan="4"|2nd Class
 
  |-
 
  |-
  |FL7A||[[:Category:FL7A|Anthocyanin]]<br>[[Image:Fl7a.png|90px]]
+
  |FL7A||[[:Category:FL7A|Anthocyani(di)n]]<br>[[Image:Fl7a.png|90px]]
  |FL7D||[[:Category:FL7D|3-Deoxyanthocyanin]]<br>[[Image:Fl7d.png|90px]]
+
  |FL7D||[[:Category:FL7D|3-Deoxyanthocyani(di)n]]<br>[[Image:Fl7d.png|90px]]
 
|}
 
|}
  
==Overview==
+
=={{Bilingual|アントシアニ(ジ)ンの概要|Overview}}==
 +
==={{Bilingual|分布|Distribution}}===
 
{{Twocolumn|
 
{{Twocolumn|
Anthocyanin is almost ubiquitous, whereas 3-Deoxyanthocyanin ([[FL7DACNS0001|luteolinidin]] and [[FL7DAANS0001|apigeninidin]]) is found only in some lower plants (moss and fern<ref>Bendz G, Martensson O, Terenlus L: Moss pigments I. The anthocyanins of Bryum cryophilum O. Mart. Acta Chem Scand 1962 16:1183-1190</ref><ref>Bendz G, Martensson O: Moss pigments II. The anthocyanins of Bryum rutilans Brid. and Bryum weigelii Spreng. Acta Chem Scand 1963 17:266</ref><ref>Comparative biochemistry of the flavonoids-II. 3-Desoxyanthocyanins and their systematic distribution in ferns and gesnerads. Phytochemistry 1966 5:589-600</ref>) and in sorghum ([[Species:Sorghum|''Sorghum bicolor'']] <ref>Nip WK, Burns EE: Pigment characterization in grain Sorghum. Cereal Chem 1969 46:490-495 also in 1971 48:74-80</ref>) and gloxinia ([[Species:Sinningia|''Sinningia cardinalis'']]).<br/>
+
Anthocyanin is almost ubiquitous, whereas 3-Deoxyanthocyanin ([[FL7DACNS0001|luteolinidin]] and [[FL7DAANS0001|apigeninidin]]) is found only in some lower plants (moss and fern<ref>Bendz G, Martensson O, Terenlus L: Moss pigments I. The anthocyanins of Bryum cryophilum O. Mart. Acta Chem Scand 1962 16:1183-1190</ref><ref>Bendz G, Martensson O: Moss pigments II. The anthocyanins of Bryum rutilans Brid. and Bryum weigelii Spreng. Acta Chem Scand 1963 17:266</ref><ref>Comparative biochemistry of the flavonoids-II. 3-Desoxyanthocyanins and their systematic distribution in ferns and gesnerads. Phytochemistry 1966 5:589-600</ref>) and in sorghum ([[Species:Sorghum|''Sorghum bicolor'']] <ref>Nip WK, Burns EE: Pigment characterization in grain Sorghum. Cereal Chem 1969 46:490-495 also in 1971 48:74-80</ref>), gloxinia ([[Species:Sinningia|''Sinningia cardinalis'']]) and many species in [[:Category:Gesneriaceae|Gesneriaceae]]<ref>Harborne JB: Comparative biochemistry of the flavonoids-II. 3-Desoxyanthocyanins and their systematic distribution in ferns and gesnerads. Phytochemistry 5:589-600</ref>.<br/>
The nine known families without anthocyanin are [[:Category:Aizoaceae|Aizoaceae]], [[:Category:Amaranthaceae|Amaranthaceae]], [[:Category:Basellaceae|Basellaceae]], [[:Category:Cactaceae|Cactaceae]], [[:Category:Chenopodiaceae|Chenopodiaceae]], [[:Category:Didiereaceae|Didiereaceae]], [[:Category:Nyctaginaceae|Nyctaginaceae]], [[:Category:Phytolaccaceae|Phytolaccaceae]], [[:Category:Portulacaceae|Portulacaceae]] (all in the order Caryophylalles). These families synthesize the betalain instead of anthocyanin.<ref>Piattelli M, Minale L: Pigments of centrospermae-II. Distribution of betacyanins. Phytochemistry 1964 3:547-557</ref>
+
The 9 known families without anthocyanin are [[:Category:Aizoaceae|Aizoaceae]], [[:Category:Amaranthaceae|Amaranthaceae]], [[:Category:Basellaceae|Basellaceae]], [[:Category:Cactaceae|Cactaceae]], [[:Category:Chenopodiaceae|Chenopodiaceae]], [[:Category:Didiereaceae|Didiereaceae]], [[:Category:Nyctaginaceae|Nyctaginaceae]], [[:Category:Phytolaccaceae|Phytolaccaceae]], [[:Category:Portulacaceae|Portulacaceae]] (all in the order Caryophylalles. However, [[:Category:Caryophyllaceae|Caryophyllaceae]] and [[:Category:Molluginaceae|Molluginaceae]] synthesize anthocyanins). These families are considered to have unfunctional genes, and instead synthesize the betalain instead of anthocyanin.<ref>Piattelli M, Minale L: Pigments of centrospermae-II. Distribution of betacyanins. Phytochemistry 1964 3:547-557</ref>
 
|
 
|
アントシアニンはほぼ植物全般に見つかりますが、3-デオキシアントシアニン([[FL7DACNS0001|luteolinidin]] and [[FL7DAANS0001|apigeninidin]])は下等植物(コケ、シダ)の他にはソルガム ([[Species:Sorghum|''Sorghum bicolor'']]), グロキシニア ([[Species:Sinningia|''Sinningia cardinalis'']])で見つかっています。<br/>
+
アントシアニンはほぼ植物全般に見つかりますが、3-デオキシアントシアニン([[FL7DACNS0001|luteolinidin]] and [[FL7DAANS0001|apigeninidin]])は下等植物(コケ、シダ)の他にはソルガム ([[Species:Sorghum|''Sorghum bicolor'']]), グロキシニア ([[Species:Sinningia|''Sinningia cardinalis'']])および[[:Category:Gesneriaceae|イワタバコ科]]に属する種で見つかっています。<br/>
アントシアニンを含まないことが知られている9科は [[:Category:Aizoaceae|ハマミズナ科(ツルナ科)]], [[:Category:Amaranthaceae|ヒユ科]], [[:Category:Basellaceae|ツルムラサキ科]], [[:Category:Cactaceae|サボテン科]], [[:Category:Chenopodiaceae|アカザ科(ヒユ科 in APG-II)]], [[:Category:Didiereaceae|カナボウノキ科]], [[:Category:Nyctaginaceae|オシロイバナ科]], [[:Category:Phytolaccaceae|ヤマゴボウ科]], [[:Category:Portulacaceae|スベリヒユ科]] (全てナデシコ目)。これらの科は代わりの色素ベタレインを生産します。
+
アントシアニンを含まないことが知られている9科は [[:Category:Aizoaceae|ハマミズナ科(ツルナ科)]], [[:Category:Amaranthaceae|ヒユ科]], [[:Category:Basellaceae|ツルムラサキ科]], [[:Category:Cactaceae|サボテン科]], [[:Category:Chenopodiaceae|アカザ科(ヒユ科 in APG-II)]], [[:Category:Didiereaceae|カナボウノキ科]], [[:Category:Nyctaginaceae|オシロイバナ科]], [[:Category:Phytolaccaceae|ヤマゴボウ科]], [[:Category:Portulacaceae|スベリヒユ科]] (全てナデシコ目。ただしナデシコ目でも[[:Category:Caryophyllaceae|ナデシコ科]]、[[:Category:Molluginaceae|ザクロソウ科]]はアントシアニンを合成)。これらの科は遺伝子レベルでは合成酵素を持つものの、機能していないと考えられています。代わりの色素ベタレインを生産します。
 
}}
 
}}
  
 +
==={{Bilingual|語源|Word origin}}===
 
{{Twocolumn|
 
{{Twocolumn|
 
The Greek word origin of anthocyanin is "flower" ἀνθός (anthos) and "blue" κυανός (kyanos).  It was first used by Marquart to describe water-soluble pigments in red, blue, and purple from flowers <ref>Marquart LC. "Die Farben der Bluethen. Eine chemisch-physiol." Abhandlung, Bonn, 1835 (Cited by Onslow MW. "The Anthocyanin Pigments of Plants," Cambridge University Press, 1925).</ref>.  Nowadays, such water-soluble pigments from flowers and fruits are called anthocyan.  The flavonoid backbone without sugar (shown below) is called anthocyanidin (it is called aglycon because it is devoid of glyco moiety), and structure with sugars is called anthocyanin. Except for carotenoid (yellow) or indigo (deep blue), most pigments of plant origin are anthocyanins.
 
The Greek word origin of anthocyanin is "flower" ἀνθός (anthos) and "blue" κυανός (kyanos).  It was first used by Marquart to describe water-soluble pigments in red, blue, and purple from flowers <ref>Marquart LC. "Die Farben der Bluethen. Eine chemisch-physiol." Abhandlung, Bonn, 1835 (Cited by Onslow MW. "The Anthocyanin Pigments of Plants," Cambridge University Press, 1925).</ref>.  Nowadays, such water-soluble pigments from flowers and fruits are called anthocyan.  The flavonoid backbone without sugar (shown below) is called anthocyanidin (it is called aglycon because it is devoid of glyco moiety), and structure with sugars is called anthocyanin. Except for carotenoid (yellow) or indigo (deep blue), most pigments of plant origin are anthocyanins.
Line 32: Line 34:
 
<references/>
 
<references/>
  
===Target of fruit and flower color engineering===
+
=={{Bilingual|機能|Function}}==
 +
==={{Bilingual|花や野菜の色|Fruit- and flower-colors}}===
 
{{Twocolumn|
 
{{Twocolumn|
Anthocyanin contains 3 aromatic rings, and glycosylation at the 3-OH position is necessary for stabilizing the aromatic ring.  The general color of anchocyanin is red in acidic environment and purple/blue in alkali.  The colors are, however, dependent on many other factors such as additional modifications and metal ions as is suggested by multi-color flowers such as [[Species:Viola|pansy]] (yellow, orange, purple, violet, deep blue).
+
Anthocyanin contains 3 aromatic rings, and glycosylation at the 3-OH position is necessary for stabilizing the aromatic ring.  The general color of anchocyanin is red in acidic environment and purple/blue in alkali.  The colors are, however, dependent on many other factors such as additional modifications and metal ions as is suggested by multi-color flowers such as [[Species:Viola|pansy]] (yellow, orange, purple, violet, deep blue). {{WrittenBy|Masanori Arita}}
 
|
 
|
アントシアニンは芳香環を3つ有し, 3-OH位置への糖転移は芳香環を安定させるために必要といわれています。 色は一般的には酸性で赤、アルカリ性で青ですが、[[Species:Viola|パンジー]]に様々な色(黄, オレンジ, 紫, 青, 濃紺など)があるように, 金属イオンや他の修飾基など様々な要素に左右されます。
+
アントシアニンは芳香環を3つ有し, 3-OH位置への糖転移は芳香環を安定させるために必要といわれています。 色は一般的には酸性で赤、アルカリ性で青ですが、[[Species:Viola|パンジー]]に様々な色(黄, オレンジ, 紫, 青, 濃紺など)があるように, 金属イオンや他の修飾基など様々な要素に左右されます。<ref>Kroon J. et al. ''Plant J.'' 1994 Jan;5(1):69-80 PMID 8130799</ref><ref>Boss PK. et al. ''Plant Mol Biol.'' 1996 Nov;32(3):565-9 PMID 8980508</ref><ref>Fukuchi-Mizutani M. et al. ''Plant Physiol.'' 2003 Jul;132(3):1652-63 PMID 12857844 (research paper on Blue Rose)</ref>
 +
 
 +
}}
 +
 
 +
==={{Bilingual|防御物質|Phytoalexin}}===
 +
{{Twocolumn|
 +
In [[Species:Sorghum|sorghum]], the 3-deoxyanthocyanidins are a class of phytoalexins, the class of compound to fend off fungi <ref>Snyder BA, Nicholson RL (1990) "Synthesis of phytoalexins in sorhum as a site-specific response to fungal ingress" ''Science'' 248:1637-1639 PMID 17746504</ref><ref>Nicholson RL, Wood KV (2001) "Phytoalexins and secondary products, where are they and how can we measure them?" ''Physiol Mol Plant Pathol'' 59:63-69</ref> They are produced within a cell under appressorial attack, first inside endoplasmic reticulum and then as colorless inclusions to the penetration site. The inclusions become yellow, and deep red with time. When the inclusions are broken by appressoria, the deoxyanthocyanidins kill the host cell and the pathogen together.
 +
|
 +
[[Species:Sorghum|ソルガム]]では、デオキシアントシアニジンが、菌類から身を守るためのファイトアレキシン(防御物質)として作用します。菌類の付着器がついた細胞の小胞体でまず生成され、色のない小胞として感染部に移動します。小胞は次第に黄色、最後には濃赤に変化します。付着器の進入によってこの小胞が壊れると、デオキシアントシアニジンによって細胞は病原体もろとも死んでしまいます。
 
}}
 
}}
References
+
<References/>
* Kroon J. et al. ''Plant J.'' 1994 Jan;5(1):69-80 PMID 8130799
+
* Boss PK. et al. ''Plant Mol Biol.'' 1996 Nov;32(3):565-9 PMID 8980508
+
* Fukuchi-Mizutani M. et al. ''Plant Physiol.'' 2003 Jul;132(3):1652-63 PMID 12857844 (research paper on Blue Rose)
+
  
==Biodiversity==
+
=={{Bilingual|生合成|Biosynthesis}}==
 
{{Twocolumn|
 
{{Twocolumn|
 
The six common anthocyanidins are the product of three different branches.
 
The six common anthocyanidins are the product of three different branches.
 +
In the figure below, horizontal shifts are hydroxylation and vertical, methylation.
 
|
 
|
 
6種の代表的アントシアニジンは、3つの合成経路に属します。
 
6種の代表的アントシアニジンは、3つの合成経路に属します。
 +
下の図では、横方向の移動が水酸基の付加、縦方向がメチル基の付加にあたります。
 
}}
 
}}
  
Line 60: Line 70:
 
| (blue or purple)
 
| (blue or purple)
 
|-
 
|-
| style="background:mistyrose"| pelargonidin
+
| style="background:Violet"| [[FL7AAANS0001|pelargonidin]]<br/>[[Image:FL7AAANS0001.png|80px]]
| [[Image:Arrow00r35.png]]<br/>hydroxylation
+
| [[Image:Arrow00r.png]]<br/>B-ring hydroxylation
| style="background:mintcream"| cyanidin
+
| style="background:MediumTurquoise"| [[FL7AACNS0001|cyanidin]]<br/>[[Image:FL7AACNS0001.png|80px]]
| [[Image:Arrow00r35.png]]<br/>hydroxylation
+
| [[Image:Arrow00r.png]]<br/>B-ring hydroxylation
| style="background:lavender"| delphinidin
+
| style="background:MediumPurple"| [[FL7AAGNS0001|delphinidin]]<br/> [[Image:FL7AAGNS0001.png|80px]]
 
|-
 
|-
 
|
 
|
Line 74: Line 84:
 
|
 
|
 
|
 
|
| style="background:mintcream"| peonidin
+
| style="background:MediumTurquoise"| [[FL7AADNS0001|peonidin]]<br/>[[Image:FL7AADNS0001.png|80px]]
 +
 
 
|
 
|
| style="background:lavender"| petunidin
+
| style="background:MediumPurple"| [[FL7AAHNS0001|petunidin]]<br/>[[Image:FL7AAHNS0001.png|80px]]
 +
 
 
|-
 
|-
 
| colspan="4"|
 
| colspan="4"|
 
{|
 
{|
|[[Image:Arrow00d35.png]]
+
|[[Image:Arrow00d35.png|5px]] indicates
 
| <small>methylation by anthocyanin<br/> O-methyltransferase (AOMT)</small>
 
| <small>methylation by anthocyanin<br/> O-methyltransferase (AOMT)</small>
 
|}
 
|}
Line 86: Line 98:
 
|-
 
|-
 
| colspan="4"|
 
| colspan="4"|
| style="background:lavender"| malvidin
+
| style="background:MediumPurple"| [[FL7AAINS0001|malvidin]]<br/>[[Image:FL7AAINS0001.png|80px]]
 +
 
 
|}
 
|}
 
</center>
 
</center>
Line 108: Line 121:
 
|}
 
|}
  
==Database statistics データベース統計==<!--- see also FL1--->
+
 
 +
==={{Bilingual|構造的特徴|Structure}}===
 +
 
 +
{{Twocolumn
 +
|
 +
Most anthocyanins in autumn leaves are comparatively simple and 3-O-glycosilated (glucoside, galactoside, rhamnoside, gentiobiosid and rutinoside) and/or acylated (p-coumaric, caffeic, ferulic, gallic, acetyl, malonic, malic etc.). Those in storage organs often show complicated structures (see [[Species:Ipomoea|Ipomoea]] and [[Species:Dioscorea|Dioscorea]]).
 +
|
 +
紅葉に含まれる多くのアントシアニンは多くが単純な構造を持ち3位に糖(グルコース、ガラクトース、ラムノース、ゲンチオビオース、ルチン)、更にアシル化(p-クマル酸、ケイ皮酸、フェルラ酸、没食子酸、酢酸、マロン酸、リンゴ酸)をうけます。芋のような貯蔵器官に含まれるものは複雑な構造が多くなります( [[Species:Ipomoea|サツマイモ属]]や[[Species:Dioscorea|ヤマノイモ属]]を参照のこと)。
 +
}}
 +
 
 +
=={{Bilingual|データベース統計|Database statistics}}==<!--- see also FL1--->
 
{{#def:FL7|{{#SearchTitle:FL7|}}}}
 
{{#def:FL7|{{#SearchTitle:FL7|}}}}
 
{{#def:rFL7|{{#SearchLine:&&FL7|Reference}}}}
 
{{#def:rFL7|{{#SearchLine:&&FL7|Reference}}}}

Latest revision as of 14:02, 15 November 2012

Anthocyanidin, Anthocyanin


Flavonoid Top Molecule Index Author Index Journals Structure Search Food New Input

Upper classes : FL Flavonoid

2nd Class
FL7A Anthocyani(di)n
Fl7a.png
FL7D 3-Deoxyanthocyani(di)n
Fl7d.png

Contents

[edit] Overview

[edit] Distribution

Anthocyanin is almost ubiquitous, whereas 3-Deoxyanthocyanin (luteolinidin and apigeninidin) is found only in some lower plants (moss and fern[1][2][3]) and in sorghum (Sorghum bicolor [4]), gloxinia (Sinningia cardinalis) and many species in Gesneriaceae[5].
The 9 known families without anthocyanin are Aizoaceae, Amaranthaceae, Basellaceae, Cactaceae, Chenopodiaceae, Didiereaceae, Nyctaginaceae, Phytolaccaceae, Portulacaceae (all in the order Caryophylalles. However, Caryophyllaceae and Molluginaceae synthesize anthocyanins). These families are considered to have unfunctional genes, and instead synthesize the betalain instead of anthocyanin.[6]

[edit] Word origin

The Greek word origin of anthocyanin is "flower" ἀνθός (anthos) and "blue" κυανός (kyanos). It was first used by Marquart to describe water-soluble pigments in red, blue, and purple from flowers [7]. Nowadays, such water-soluble pigments from flowers and fruits are called anthocyan. The flavonoid backbone without sugar (shown below) is called anthocyanidin (it is called aglycon because it is devoid of glyco moiety), and structure with sugars is called anthocyanin. Except for carotenoid (yellow) or indigo (deep blue), most pigments of plant origin are anthocyanins.

  1. Bendz G, Martensson O, Terenlus L: Moss pigments I. The anthocyanins of Bryum cryophilum O. Mart. Acta Chem Scand 1962 16:1183-1190
  2. Bendz G, Martensson O: Moss pigments II. The anthocyanins of Bryum rutilans Brid. and Bryum weigelii Spreng. Acta Chem Scand 1963 17:266
  3. Comparative biochemistry of the flavonoids-II. 3-Desoxyanthocyanins and their systematic distribution in ferns and gesnerads. Phytochemistry 1966 5:589-600
  4. Nip WK, Burns EE: Pigment characterization in grain Sorghum. Cereal Chem 1969 46:490-495 also in 1971 48:74-80
  5. Harborne JB: Comparative biochemistry of the flavonoids-II. 3-Desoxyanthocyanins and their systematic distribution in ferns and gesnerads. Phytochemistry 5:589-600
  6. Piattelli M, Minale L: Pigments of centrospermae-II. Distribution of betacyanins. Phytochemistry 1964 3:547-557
  7. Marquart LC. "Die Farben der Bluethen. Eine chemisch-physiol." Abhandlung, Bonn, 1835 (Cited by Onslow MW. "The Anthocyanin Pigments of Plants," Cambridge University Press, 1925).

[edit] Function

[edit] Fruit- and flower-colors

Anthocyanin contains 3 aromatic rings, and glycosylation at the 3-OH position is necessary for stabilizing the aromatic ring. The general color of anchocyanin is red in acidic environment and purple/blue in alkali. The colors are, however, dependent on many other factors such as additional modifications and metal ions as is suggested by multi-color flowers such as pansy (yellow, orange, purple, violet, deep blue). (BY Masanori Arita)

[edit] Phytoalexin

In sorghum, the 3-deoxyanthocyanidins are a class of phytoalexins, the class of compound to fend off fungi [1][2] They are produced within a cell under appressorial attack, first inside endoplasmic reticulum and then as colorless inclusions to the penetration site. The inclusions become yellow, and deep red with time. When the inclusions are broken by appressoria, the deoxyanthocyanidins kill the host cell and the pathogen together.

  1. Snyder BA, Nicholson RL (1990) "Synthesis of phytoalexins in sorhum as a site-specific response to fungal ingress" Science 248:1637-1639 PMID 17746504
  2. Nicholson RL, Wood KV (2001) "Phytoalexins and secondary products, where are they and how can we measure them?" Physiol Mol Plant Pathol 59:63-69

[edit] Biosynthesis

The six common anthocyanidins are the product of three different branches. In the figure below, horizontal shifts are hydroxylation and vertical, methylation.

Biosynthesis (continued from the chart in Flavonoid)
(red or orange) (blue or magenta) (blue or purple)
pelargonidin
FL7AAANS0001.png
Arrow00r.png
B-ring hydroxylation
cyanidin
FL7AACNS0001.png
Arrow00r.png
B-ring hydroxylation
delphinidin
FL7AAGNS0001.png
Arrow00d35.png Arrow00d35.png
peonidin
FL7AADNS0001.png
petunidin
FL7AAHNS0001.png
Arrow00d35.png indicates methylation by anthocyanin
O-methyltransferase (AOMT)
Arrow00d35.png
malvidin
FL7AAINS0001.png

All three classes exist in most angio- and gymnosperm orders, and hydroxylating enzymes (F3'H and F3'5'H) show high sequence homology throughout orders. However, genetic changes cause genus-specific inactivation of these pathways.

Genus (Family) Inactivation Cause
Arabidopsis (Brassicaceae)
Petunia (Solanaceae)
Cymbidium (Orchidaceae)
pelargonidin DFR does not metabolize dihydrokaempferol.
Chrysanthemum (Asteraceae)
Dianthus (Caryophyllaceae)
Ipomoea (Convolvulaceae)
delphinidin F3'5'H is absent.


[edit] Structure

Most anthocyanins in autumn leaves are comparatively simple and 3-O-glycosilated (glucoside, galactoside, rhamnoside, gentiobiosid and rutinoside) and/or acylated (p-coumaric, caffeic, ferulic, gallic, acetyl, malonic, malic etc.). Those in storage organs often show complicated structures (see Ipomoea and Dioscorea).

[edit] Database statistics

[edit] Major Plant Families

The number in each family is counted as the number of genera (not species) listed in our registered references. Each reference record is accessible by clicking the link in compound pages. The taxonomy follows the APG-II classification. For details (or if the figure is broken), visit this page.

各科のカウントは種名でなく文献に記載された属名の数です。文献は代謝物ページのリンクからたどれ、分類はAPG-IIです。左の図が表示されない場合はここをクリックしてください。

Subcategories

This category has the following 2 subcategories, out of 2 total.

F

  • [×] FL7A(empty)
  • [×] FL7D(empty)
Personal tools
Namespaces

Variants
Actions
Navigation
metabolites
Toolbox
In other languages