Aritalab:Lecture/Math/Function
From Metabolomics.JP
< Aritalab:Lecture | Math(Difference between revisions)
(Created page with "==ガンマ関数== <math> \Gamma(z) = \int^\infty_0 e^{-t} t^{z-1} dt </math> は階乗の一般化で <math> \Gamma(z+1) = z \Gamma(z)\, </math> を満たす。''z'' が正...") |
(→ベータ関数) |
||
(4 intermediate revisions by one user not shown) | |||
Line 6: | Line 6: | ||
は階乗の一般化で <math> \Gamma(z+1) = z \Gamma(z)\, </math> を満たす。''z'' が正の整数の場合は | は階乗の一般化で <math> \Gamma(z+1) = z \Gamma(z)\, </math> を満たす。''z'' が正の整数の場合は | ||
− | <math>\Gamma(z + 1) = z!\,</math> | + | <math>\Gamma(z + 1) = z!\,</math> |
;例 | ;例 | ||
Line 14: | Line 14: | ||
:<math>\Gamma(z+1/2) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}</math> | :<math>\Gamma(z+1/2) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}</math> | ||
− | ; | + | ;Stirling の近似 |
− | :<math>\Gamma(z+1) = z! \sim \sqrt{2\pi z} | + | :<math>\Gamma(z+1) = z! \sim \sqrt{2\pi z} \Big(\frac{z}{e}\Big)^z </math> |
− | + | ||
==ベータ関数== | ==ベータ関数== | ||
Line 27: | Line 26: | ||
:<math>\Beta(x,y) = \frac{x+y}{y} \Beta(x,y+1)\,</math> | :<math>\Beta(x,y) = \frac{x+y}{y} \Beta(x,y+1)\,</math> | ||
:<math>\Beta(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)}</math> | :<math>\Beta(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x + y)}</math> | ||
− | :<math>\Beta(\frac{1}{2},\frac{1}{2}) = \pi\,</math> | + | :<math>\textstyle \Beta(\frac{1}{2},\frac{1}{2}) = \pi\,</math> |
Latest revision as of 21:26, 20 July 2011
[edit] ガンマ関数
は階乗の一般化で を満たす。z が正の整数の場合は
- 例
- Stirling の近似
[edit] ベータ関数
- 例